
 1

Chapter 1

The UI Automation Environment
Intended for interoperable implementations by other companies, Microsoft’s UI Automation

(UIA) Community Promise is a specification that provides information about Microsoft's

accessibility frameworks, including Active Accessibility (MSAA), UI Automation (UIA), and its

shared implementations. In this chapter, we provide a summary of descriptions from the UIA

Community Promise to show how the components of UIA fit together to enable accessibility.

UIA provides programmatic access to UI controls on the desktop, enabling assistive technol-

ogy (AT) products, such as screen readers, to provide information about the UI to end users.

ATs enable the user to manipulate the UI by means other than the standard mouse and

keyboard, such as through speech recognition.

UIA improves upon Microsoft’s legacy accessibility framework, MSAA, by aiming to address

the following goals:

 Enable efficient access and security over MSAA’s architecture

 Expose more robust information about the UI

 Offer interoperability with MSAA implementations

 Provide developers the option of using either native interfaces or managed interfaces

For demonstration purposes, examples are in native code (unmanaged interfaces based on

COM); however, the same principles and techniques are applied to managed practices (the

programming model of the Microsoft .NET Framework). Whether you will use native or

managed code depends upon your framework and preferences.

Go further: For more information on the UIA Community Promise, go to

http://go.microsoft.com/fwlink/?LinkId=150842.

Providers and Clients
In UIA, applications, such as word processing programs, are called Providers. ATs, such as

screen readers, are called Clients. Providers expose properties and features of the UI by

implementing UIA interfaces. Clients can then obtain information about the UI through a

client interface from the UIA framework.

Providers communicate to Clients through UIA Events. Events are crucial for notifying Clients

of changes to the UIA Tree (discussed later in this chapter), UI states, or UI controls. Unlike

 Engineering Software for Accessibility 2

WinEvents used in MSAA, UIA Events use a subscription mechanism, rather than a broadcast

mechanism, to obtain information. UIA Clients register for UIA Events for specific user inter-

faces or even parts of the UI and can also request that some UIA Properties and Control

Pattern information be cached along with registration for better performance.

Figure 1-1 is a simplified illustration of a UIA Provider and Client.

FIGURE 1-1 Simplified illustration of a UIA Provider and Client

Providers

An application may support UIA through one of two ways:

 Designing the UI based on standard framework controls and libraries that support UIA

 Implementing the UIA Provider interfaces

The following are just some of the common actions performed by UIA Providers:

 Expose UI controls by describing their functionality through Control Patterns, Properties,

and Methods

 Expose the relationships of UIA Elements through the UIA Tree

 Report changes and actions related to the UI by raising UIA Events

Clients

UIA Clients can perform many different actions. The following are just some of the common

actions performed:

 Search for elements within the UIA Tree

 Navigate among UIA Elements

 Chapter 1 The UI Automation Environment 3

 Subscribe to UIA Events

 Manipulate the UI by using UIA Control Patterns

Main Components
Now that you have a general sense of how UIA works, let’s talk further about the main

components of the framework: the Automation Elements and the UIA Tree.

Automation Elements

UIA exposes every component of the UI to Client applications as an Automation Element.

Elements are contained in a tree structure, with the desktop as the root element.

Automation Elements are associated with pairs of Properties and Control Patterns, represent-

ing the functionality of an element in the UI. One of these properties is the UIA Control Type,

which defines its basic appearance and functionality as a single recognizable entity, such as a

button or check box. Table 1-1 lists a few Control Types and Patterns associated with a typical

Automation Element.

TABLE 1-1 Example set of Control Types and Patterns associated with a typical

Automation Element

Name Control Type Control Pattern

OK Button Invoke

Open ComboBox Value, Expand/Collapse

Installed Programs List Selection, Scroll

The UIA Tree

The UIA Tree allows UIA Clients to navigate through the structure of the UI. The root element

of the Tree is the desktop, whose child elements are programs running on it, such as an

application or the operating system’s UI. Each of the child elements can contain elements

representing parts of the UI, such as menus, buttons, toolbars, and lists. These elements in

turn can also contain sub-elements, such as items in a list.

The UIA Tree is not a fixed structure and is seldom seen in its totality, because it might contain

thousands of elements. Parts of it are built as they are needed, and it can undergo changes as

elements are added, moved, or removed. UIA enables reparenting and repositioning, so that

an element can move to another part of the tree, despite the hierarchy imposed by ownership

of the underlying architecture.

 Engineering Software for Accessibility 4

Navigation in the UIA Tree is hierarchical: from parents to children and from one sibling to

the next. UIA Providers support the UIA Tree by implementing navigation among items within

a fragment, which consists of its root and sub-elements. Simple parts of the UI, however, do

not need navigation implemented. The UIA framework manages navigations between frag-

ments based on the underlying architecture.

A simple UIA Provider can be seen in Figure 1-2. Created on a Win32 framework, the Email

Address window contains two child elements: the Email text label and its corresponding edit

box. The Email text label and the edit box are siblings and would be positioned next to each

other in the fragment of the UIA Tree. In Chapter 2, “Designing the Logical Hierarchy,” we

discuss in more detail why correctly mapping sibling relationships is important for navigation

and giving users of AT context about the UI.

FIGURE 1-2 UIA Provider with two child elements: the Email text label and its corresponding edit box

UIA offers three default views of the UIA Tree for Clients. Clients can customize the view by

defining new conditions for the UIA Properties.

 Raw view The raw view is a UIA Tree with no filtering. All elements are available

in this view.

 Control view The control view of the UIA Tree simplifies the AT product's task of

describing the UI to the end user and helping that end user interact with the

application. The view maps to the UI structure perceived by an end user. It includes

all Automation Elements that an end user would understand as interactive or

contributing to the logical structure of the control in the UI. Examples of UI items

that contribute to the logical structure of the UI, but are not interactive themselves,

are list view headers, toolbars, menus, and the status bar. Non-interactive items

used simply for layout or decorative purposes will not appear in the control view.

An example would be a panel that is used only to lay out the controls in a dialog

box, decorative graphics, and static text in a dialog box. UIA Providers can specify

the elements appearing in control view by setting the UIA IsControlElement

Property to True.

 Chapter 1 The UI Automation Environment 5

 Content view The content view of the UIA Tree is a subset of the control view. It

contains UI items that convey the true information in a UI, including UI items that

can receive keyboard focus and some text that are not labels for other UI items

nearby. For example, the values in a drop-down combo box will appear in the

content view because they represent the information being used by an end user.

UIA Providers can specify the elements appearing in content view by setting the

UIA IsContentElement Property to True.

Control Patterns

Control patterns represent common UI behaviors (such as invoking a button) and support the

properties, methods, and events. Each UIA Control Pattern is its own interface with properties

and methods that provide a way to categorize and expose a control's functionality, indepen-

dent of the UIA Control Type or the appearance of the control. Table 1-2 provides examples

of the functionality represented by different UIA Control Patterns.

TABLE 1-2 Examples of functionality for different Control Patterns

Functionality Control Pattern

Ability to share three states of on / off /

indeterminate
Toggle

Ability to support a numeric value within a

range
RangeValue

Ability to support a string value Value

Ability to move / resize / rotate Transform

Go further: For more information on UIA Control Patterns, go to

http://go.microsoft.com/fwlink/?LinkId=150842.

Control Types

UIA Control Types are well-known identifiers that can be used to indicate what kind of con

trol a particular element represents, such as a Button, Check Box, Combo Box, Data Grid,

Document, Hyperlink, Image, ToolTip, Tree, or Window. Each Control Type has a set of

conditions, which include specific guidelines for the UIA Tree, Property values, Control

Patterns, and Events that a control must meet to use a Control Type defined in the UIA

Specification.

 Engineering Software for Accessibility 6

Having a well-known identifier makes it easier for Client programs to determine what kinds of

controls they must interact with in the UI. The Control Types included with UIA offer a clearer

identification for the controls than ones defined by MSAA’s accRole property.

Controls do not have to set a Control Type, however. If there is no Control Type that

represents your control well, set the Control Type to “custom,” and expose your control

properly through the patterns and properties (including the LocalizedControlType

property) that makes the most sense for your control. The UIA Specification defines required,

recommended, or prohibited control patterns and properties. Custom controls can implement

additional Control Patterns or Properties while being mapped to a specific Control Type.

Go further: For more information on UIA Control Types, go to

http://go.microsoft.com/fwlink/?LinkId=150842.

Properties

In UIA, there are two kinds of properties that provide information about a UI element:

 Automation Element Properties Properties that are applicable to most

elements. For example, two properties that apply to all Automation Elements are

the Name and AutomationId properties. Having these properties properly filled is

highly recommended because most Clients use these properties for every

Automation Element, but there may be times when the Name property may be

blank for valid reasons. For example, elements used solely for layout purposes are

often kept nameless, but interactive controls should not be left with a blank Name

property.

 Control Pattern Properties Properties specific to the functionality represented

in the Control Pattern interfaces. For instance, the UIA Value Pattern will support

the Value property to represent the context of controls such as a progress bar or

calendar.

To ensure that you are providing the right information for clients to consume, be sure to

adhere to the Specification. Certain properties have very strict requirements set. At other

times, sometimes leaving the default property values is the right course of action.

Go further: For more information on UIA Properties, go to

http://go.microsoft.com/fwlink/?LinkId=150842.

 Chapter 1 The UI Automation Environment 7

Events

UIA Events correspond to activities occurring in the UI and are crucial pieces of information

for UIA Clients. As mentioned, UIA uses a subscription model for UIA Events; a UIA Provider

will not process an Event unless a Client is listening for them. Table 1-3 lists the four different

types of UIA Events.

TABLE 1-3 UIA Events

Event Description

Property change Raised when a UIA property changes. For example, if a Client needs to monitor an

application's check box control, it can register to listen for a Property change Event

on the ToggleState property of the Toggle Pattern. When the check box control

is checked or unchecked, the property change Event for the Property gets raised.

Element action Raised when an action is made in the UI, often related to UIA Control Patterns. For

example, when an item is selected, an ElementSelected Event gets raised.

Structure change Raised when the structure of the UIA Tree changes. The structure changes when

new UI items become visible, hidden, or removed on the desktop.

General event Raised when actions of global interest to the Client occur, such as when the focus

shifts from one element to another, or when a window closes.

Go further: For more information on UI Automation Events, go to

http://go.microsoft.com/fwlink/?LinkId=150842.

Custom Control Patterns, Properties, and Events

UIA features several Control Patterns, Properties, and Events, but the Windows implemen-

tation of UIA also offers further extensibility by registration of custom control patterns,

properties, and events. As of today, this functionality is not available for managed applications

of both UIA Providers and Clients.

New custom control patterns, properties, and events are only necessary if the standard UIA

Control Patterns, Properties, and Events are not sufficient. Because of the extraordinary costs

associated with creating new custom control patterns, properties, and events, you should

avoid doing so whenever possible.

Go further: For more information on UIA Custom Control Patterns, Properties, and Events and

future interoperable specifications, go to http://go.microsoft.com/fwlink/?LinkId=150842.

 Engineering Software for Accessibility 8

Planning Your Hierarchy
Now that we have covered how each of the components of UIA fit together and enable

programmatic access, you are ready to learn how to design a navigational tree, called the

logical hierarchy, for your product. In the next chapter, we walk you through the steps for

designing a logical hierarchy, using an employee timecard application as an example.

